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Refreshing from Last Lecture

• Basic Block Formation

• Value Numbering
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Partitioning into Basic Blocks

• Identify the leader of each basic block 
–  First instruction 
–  Any target of a jump 
–  Any instruction immediately following a jump

• Basic block starts at leader & ends at 
instruction immediately before a leader (or 
the last instruction)
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Value Numbering (VN)
• More explicit with respect to VALUES, and TIME

• each value has its own “number”
– common subexpression means same value number

• var2value: current map of variable to value 
– used to determine the value number of current expression

                            r1 + r2 => var2value(r1)+var2value(r2)
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Algorithm
Data structure:
     VALUES = Table of
        expression     //[OP, valnum1, valnum2}
        var            //name of variable currently holding expression

For each instruction (dst = src1 OP src2) in execution order

  valnum1 = var2value(src1); valnum2 = var2value(src2);

  IF [OP, valnum1, valnum2] is in VALUES
     v = the index of expression
     Replace instruction with CPY dst = VALUES[v].var
  ELSE
     Add 
        expression = [OP, valnum1, valnum2]
        var        = dst
     to VALUES
     v = index of new entry; tv is new temporary for v
     Replace instruction with: tv = VALUES[valnum1].var OP VALUES[valnum2].var
                               CPY dst = tv;

  set_var2value (dst, v)
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VN Example

Assign: a->r1,b->r2,c->r3,d->r4
a = b+c;     ADD t1 = r2,r3
             CPY r1 = t1   //(a = t1)
b = a-d;     SUB t2 = r1,r4
             CPY r2 = t2   //(b = t2) 
c = b+c;     ADD t3 = r2,r3
             CPY r3 = t3   //(c = t3)
d = a-d;     CPY r2 = t2
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Questions about Assignment #1

• Tutorial #2 today
– More in-depth LLVM coverage
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Outline
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1. Structure of data flow analysis

2. Example 1: Reaching definition analysis

3. Example 2: Liveness analysis

4. Generalization



What is Data Flow Analysis?
• Local analysis (e.g., value numbering)
– analyze effect of each instruction
– compose effects of instructions to derive information 

from beginning of basic block to each instruction

• Data flow analysis
– analyze effect of each basic block
– compose effects of basic blocks to derive information 

at basic block boundaries
– from basic block boundaries, apply local technique to 

generate information on instructions
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What is Data Flow Analysis? (2)

• Data flow analysis: 
– Flow-sensitive: sensitive to the control flow in a function 
– intraprocedural analysis

• Examples of optimizations:
– Constant propagation
– Common subexpression elimination
– Dead code elimination
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What is Data Flow Analysis? (3)
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For each variable x determine: 

Value of x?

Which “definition” defines x?

Is the definition still meaningful (live)?

e = b + c a = 243

e = d+3
g = a

a = b + c
d = 7



Static Program vs. Dynamic Execution

• Statically: Finite program
• Dynamically: Can have infinitely many possible execution paths 
• Data flow analysis abstraction: 

– For each  point in the program: 
combines information of all the instances of the same program point. 

• Example of a data flow question: 
– Which definition defines the value used in statement “b = a”?
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Effects of a Basic Block

• Effect of a statement: a = b+c
• Uses variables (b, c)
• Kills an old definition (old definition of a)
• new definition (a)

• Compose effects of statements -> Effect of a basic block
– A locally exposed use in a b.b. is a use of a data item 

which is not preceded in the b.b. by a definition of the 
data item

– any definition of a data item in the basic block kills all 
definitions of the same data item reaching the basic block.

– A locally available definition = last definition of data item 
in b.b.
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Effects of a Basic Block
A locally available definition = last definition of data item in b.b.
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t1 = r1+r2
r2 = t1
t2 = r2+r1
r1 = t2
t3 = r1*r1
r2 = t3
if r2>100 goto L1

Locally exposed uses? r1

Kills any definitions? Any other 
definition
 of t2

Locally avail. definition? t2



Reaching Definitions

• Every assignment is a definition
• A definition d reaches a point p 

if there exists path from the point immediately following d to p 
such that d is not killed (overwritten) along that path. 

• Problem statement
– For each point in the program, determine if each definition in the 

program reaches the point
– A bit vector per program point, vector-length = #defs
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d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
    if e

B1

B2 B3

d1 reaches
 this point?



Reaching Definitions (2)

• Every assignment is a definition
• A definition d reaches a point p 

if there exists path from the point immediately following d to p 
such that d is not killed (overwritten) along that path. 

• Problem statement
– For each point in the program, determine if each definition in the 

program reaches the point
– A bit vector per program point, vector-length = #defs
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d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
    if e

B1

B2 B3

d2 reaches
 this point?



Reaching Definitions (3)
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L1: if input() GOTO L2

d0: a = x 

L2: …    d1: b = a 
d2: a = y
GOTO L1

d2 reaches
 this point?

yes



Data Flow Analysis Schema

• Build a flow graph (nodes = basic blocks, edges = control flow)
• Set up a set of equations between in[b] and out[b] for all basic 

blocks b
– Effect of code in basic block: 

• Transfer function fb relates in[b] and out[b], for same b
– Effect of flow of control: 

• relates out[b1], in[b2] if b1 and b2 are adjacent
• Find a solution to the equations
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  f1  
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entry

exit

  f3  

in[1]

out[1]

in[2]

out[2]
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Effects of a Statement

• fs : A transfer function of a statement
– abstracts the execution with respect to the problem of interest

• For a statement s (d: x = y + z)
out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])
– Gen[s]: definitions generated: Gen[s] = {d}
– Propagated definitions: in[s] - Kill[s], 

where Kill[s]=set of all other defs to x in the rest of program
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d1: x = 10

d0: y = 3 
in[B0]

d2: y = 11
out[B0]

fd0

fd1

fd2



Effects of a Basic Block

• Transfer function of a statement s:
• out[s] = fs(in[s]) = Gen[s] U (in[s]-Kill[s])

• Transfer function of a basic block B: 
• Composition of transfer functions of statements in B

• out[B] = fB(in[B]) = fd2fd1fd0(in[B]) 
= Gen[d2] U (Gen[d1] U (Gen[d0] U (in[B]-Kill[d0]))-Kill[d1])) -Kill[d2]
= Gen[d2] U (Gen[d1] U (Gen[d0] - Kill[d1]) - Kill[d2]) U
                                                in[B] - (Kill[d0] U Kill[d1] U Kill[d2])
= Gen[B] U (in[B] - Kill[B])
• Gen[B]: locally exposed definitions (available at end of bb)
• Kill[B]: set of definitions killed by B
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d1: x = 10

d0: y = 3 
in[B0]

d2: y = 11
out[B0]

fd0

fd1

fd2

fB = 
fd2⋅fd1⋅fd1



Example

• a transfer function fb of a basic block b:
OUT[b] = fb(IN[b])

incoming reaching definitions -> outgoing reaching definitions
• A basic block b 

• generates definitions: Gen[b], 
– set of locally available definitions in b

• kills definitions: in[b] - Kill[b], 
where Kill[b]=set of defs (in rest of program) killed by defs in b

• out[b] = Gen[b] U (in(b)-Kill[b])
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d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
    if e

B1

B2 B3



Example

• a transfer function fb of a basic block b:
OUT[b] = fb(IN[b])

incoming reaching definitions -> outgoing reaching definitions
• A basic block b 

• generates definitions: Gen[b], 
– set of locally available definitions in b

• kills definitions: in[b] - Kill[b], 
where Kill[b]=set of defs (in rest of program) killed by defs in b

• out[b] = Gen[b] U (in(b)-Kill[b])
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d3: x = 1
d4: y = 2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
    if e

B1

B2 B3



Effects of the Edges (acyclic)

• out[b] = fb(in[b])
• Join node: a node with multiple predecessors
• meet operator: 
             in[b] = out[p1] U out[p2] U ... U out[pn], where

               p1, ..., pn are all predecessors of b
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Example

• out[b] = fb(in[b])
• Join node: a node with multiple predecessors
• meet operator: 
             in[b] = out[p1] U out[p2] U ... U out[pn], where

               p1, ..., pn are all predecessors of b
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f  Gen  Kill
1 {1,2} {0,2,3,4,6}
2 {3,4} {0,1,2,6}
3 {5,6} {1,3}

d3: x = x+1
d4: y = y+2

d5: z = x
d6: x = 4

d0: y = 3
d1: x = 10
d2: y = 11
    if e

B1

B2 B3



Example

• out[b] = fb(in[b])
• Join node: a node with multiple predecessors
• meet operator: 
             in[b] = out[p1] U out[p2] U ... U out[pn], where

               p1, ..., pn are all predecessors of b
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f  Gen  Kill
1 {1,2} {0,2,3,4,6}
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Cyclic Graphs

• Equations still hold
• out[b] = fb(in[b])
• in[b] = out[p1] U out[p2] U ... U out[pn], p1, ..., pn pred.

• Find: fixed point solution
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Reaching Definitions: Iterative Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
   out[Entry] = ∅

// Initialization for iterative algorithm
   For each basic block B other than Entry
      out[B] = ∅

// iterate
   While (Changes to any out[] occur) {
      For each basic block B other than Entry {
         in[B] = ∪ (out[p]), for all predecessors p of B
         out[B] = fB(in[B])    // out[B]=gen[B]∪(in[B]-kill[B])
      }
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Reaching Definitions: Worklist Algorithm

input: control flow graph CFG = (N, E, Entry, Exit)

// Initialize
    out[Entry] = ∅         // can set out[Entry] to special def
                           // if reaching then undefined use
    For all nodes i
        out[i] = ∅         // can optimize by out[i]=gen[i]
    ChangedNodes = N

// iterate
    While ChangedNodes ≠ ∅ {
        Remove i from ChangedNodes
        in[i] = U (out[p]), for all predecessors p of i
        oldout = out[i]
        out[i] = fi(in[i])     // out[i]=gen[i]U(in[i]-kill[i])
        if (oldout ≠ out[i]) {
            for all successors s of i
                add s to ChangedNodes
        }
    }
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Example
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Live Variable Analysis
• Definition

– A variable v is live at point p if 
• the value of v is used along some path in the flow graph starting at p. 

– Otherwise, the variable is dead.
• Motivation

• e.g. register allocation
           for i = 0 to n
              … i …
           …
           for i = 0 to n
              … i … 
• Problem statement

– For each basic block
• determine if each variable is live in each basic block

– Size of bit vector: one bit for each variable
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v live at this point?



Transfer Function
• Insight: Trace uses backwards to the definitions

• A basic block b can
• generate live variables: Use[b]

– set of locally exposed uses in b
• propagate incoming live variables:  OUT[b] - Def[b],

– where Def[b]= set of variables defined in b.b.
• transfer function for block b:

in[b] = Use[b] U (out(b)-Def[b])
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Flow Graph

• in[b] = fb(out[b])
• Join node: a node with multiple successors
• meet operator: 
              out[b] = in[s1] U in[s2] U ... U in[sn], where
                       s1, ..., sn are all successors of b
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Flow Graph (2)

• in[b] = fb(out[b])
• Join node: a node with multiple successors
• meet operator: 
              out[b] = in[s1] U in[s2] U ... U in[sn], where
                       s1, ..., sn are all successors of b
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f  Use  Def
1  {}  {a,b}
2  {b} {a,c}
3  {a} {b,d}



Liveness: Iterative Algorithm
input: control flow graph CFG = (N, E, Entry, Exit)

// Boundary condition
   in[Exit] = ∅

// Initialization for iterative algorithm
   For each basic block B other than Exit
      in[B] = ∅

// iterate
   While (Changes to any in[] occur) {
      For each basic block B other than Exit {
         out[B] = ∪ (in[s]), for all successors s of B
         in[B] = fB(out[B])    // in[B]=Use[B]∪(out[B]-Def[B])
      }

35



Example
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Framework
Reaching Definitions Live Variables

Domain Sets of definitions Sets of variables

Direction forward:
out[b] = fb(in[b])
in[b] = ∧ out[pred(b)]

backward: 
in[b] = fb(out[b])
out[b] = ∧ in[succ(b)]

Transfer function fb(x) = Genb ∪ (x –Killb) fb(x) = Useb ∪ (x -Defb)

Meet Operation (∧) ∪ ∪

Boundary Condition out[entry] = ∅ in[exit] = ∅

Initial interior points out[b] = ∅ in[b] = ∅
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Other examples (e.g., Available expressions), defined in ALSU 9.2.6



Thought Problem 1.  “Must-Reach” Definitions

• A definition D (a = b+c) must reach point P iff 
– D appears at least once along on all paths leading 

to P 
– a is not redefined along any path after last 

appearance of D and before P
• How do we formulate the data flow 

algorithm for this problem?
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Thought Problem 2: A legal solution to 
(May) Reaching Def?

• Will the worklist algorithm generate this answer?
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Questions
• Correctness 

• equations are satisfied, if the program terminates.

• Precision: how good is the answer?
• is the answer ONLY a union of all possible executions?

• Convergence: will the analysis terminate?
• or, will there always be some nodes that change?

• Speed: how fast is the convergence?
• how many times will we visit each node?
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Foundations of Data Flow Analysis

1.   Meet operator

2.   Transfer functions

3.   Correctness, Precision, Convergence

4.   Efficiency

•Reference: ALSU pp. 613-631
•Background: Hecht and Ullman, Kildall, Allen and Cocke[76]
•Marlowe & Ryder, Properties of data flow frameworks: a unified model. 
Rutgers tech report, Apr. 1988
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A Unified Framework
• Data flow problems are defined by

• Domain of values: V
• Meet operator (V ∧ V � V), initial value
• A set of transfer functions (V � V)

• Usefulness of unified framework
• To answer questions such as 

correctness, precision, convergence, speed of convergence
for a family of problems
– If meet operators and transfer functions have properties X, then 

we know Y about the above.

• Reuse code

42



Meet Operator
• Properties of the meet operator

• commutative:  x ∧ y = y ∧ x

• idempotent:  x ∧ x = x
• associative:  x ∧ (y ∧ z) = (x ∧ y) ∧ z
• there is a Top element T such that x ∧ T = x 

• Meet operator defines a partial ordering on values
• x ≤ y if and only if x ∧ y = x   (y -> x in diagram)

– Transitivity: if x ≤ y and y ≤ z then x ≤ z 
– Antisymmetry : if x ≤ y and y ≤ x then x = y 
– Reflexitivity: x ≤ x
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x y

x ∧ 
y



Partial Order
• Example: let V = {x | such that x ⊆ { d1, d2}}, ∧ = ∩

• Top and Bottom elements
• Top T such that:       x ∧ T = x
• Bottom ⊥ such that:  x ∧ ⊥ = ⊥ 

• Values and meet operator in a data flow problem define a 
semi-lattice:
– there exists a T, but not necessarily a ⊥.

• x, y are ordered: x ≤ y then x ∧ y = x   (y -> x in diagram)
• what if x and y are not ordered? 

• x ∧ y ≤ x, x ∧ y ≤ y, and if w ≤ x, w ≤ y, then w ≤ x ∧ y
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One vs. All Variables/Definitions
• Lattice for each variable: e.g. intersection

• Lattice for three variables:
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1

0



Descending Chain
• Definition

• The height of a lattice is the largest number of > relations that will fit in a 
descending chain. 

    x0 > x1 > x2 > …

• Height of values in reaching definitions?
   

• Important property: finite descending chain
• Can an infinite lattice have a finite descending chain? 

• Example: Constant Propagation/Folding
• To determine if a variable is a constant 

• Data values
• undef, ... -1, 0, 1, 2, ..., not-a-constant
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Height n – number of definitions

yes



Transfer Functions

• Basic Properties  f: V → V 
– Has an identity function

• There exists an f such that f (x) = x, for all x.

– Closed under composition 
• if f1, f2 ∈ F, then f1 ⋅ f2 ∈ F
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Monotonicity
• A framework (F, V, ∧) is monotone if and only if

• x ≤ y implies f(x) ≤ f(y)

• i.e. a “smaller or equal” input to the same function will 
always give a “smaller or equal” output

• Equivalently, a framework (F, V, ∧) is monotone if and 
only if

• f(x ∧ y) ≤ f(x) ∧ f(y)

• i.e. merge input, then apply f is small than or equal to apply 
the transfer function individually and then merge the result
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Example
• Reaching definitions: f(x) = Gen ∪ (x - Kill), ∧ = ∪

– Definition 1: 
• x1 ≤ x2, Gen ∪ (x1 - Kill) ≤ Gen ∪ (x2 - Kill)

– Definition 2:
• (Gen ∪ (x1 - Kill) ) ∪ (Gen ∪ (x2 - Kill) ) 

= (Gen ∪ ((x1 ∪ x2) - Kill))

• Note: Monotone framework does not mean that f(x) ≤ x
• e.g., reaching definition for two definitions in program 
• suppose: fx: Genx = {d1, d2} ; Killx= {}

• If input(second iteration) ≤ input(first iteration)
• result(second iteration) ≤ result(first iteration)
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Distributivity

• A framework (F, V, ∧) is distributive if and only if
• f(x ∧ y) = f(x) ∧ f(y)

• i.e. merge input, then apply f is equal to apply the transfer function 
individually then merge result

• Example: Constant Propagation is NOT distributive

50

 a = 2 
 b = 3 

 a = 3 
 b = 2 

 c = a + b 



Data Flow Analysis
• Definition

– Let f1, ..., fm : ∈ F,  where fi  is the transfer function for node i
• fp = fnk ⋅ … ⋅ fn1 , where p is a path through nodes n1, ..., nk
• fp = identify function, if p is an empty path

• Ideal data flow answer: 
– For each node n:  
           ∧ fpi (T), for all possibly executed paths pi reaching n.

 
• But determining all possibly executed paths is undecidable
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 x = 0  x = 1

if sqrt(y) >= 0



Meet-Over-Paths (MOP)
• Error in the conservative direction
• Meet-Over-Paths (MOP):

• For each node n:  
     MOP(n) = ∧ fpi (T), for all paths pi reaching n

• a path exists as long there is an edge in the code 
• consider more paths than necessary
• MOP = Perfect-Solution ∧ Solution-to-Unexecuted-Paths 
• MOP ≤ Perfect-Solution
• Potentially more constrained, solution is small

• hence conservative
• It is not safe to be > Perfect-Solution!

• Desirable solution: as close to MOP as possible
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MOP Example
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Solving Data Flow Equations
• Example: Reaching definitions

• out[entry] = {}
• Values = {subsets of definitions}
• Meet operator: ∪

• in[b] = ∪ out[p], for all predecessors p of b
• Transfer functions:  out[b] = genb ∪ (in[b] -killb)

• Any solution satisfying equations = Fixed Point Solution (FP)
• Iterative algorithm 

• initializes out[b] to {}
• if converges, then it computes Maximum Fixed Point (MFP):

• MFP is the largest of all solutions to equations
• Properties:

• FP ≤ MFP ≤ MOP ≤ Perfect-solution
• FP, MFP are safe 
• in(b) ≤ MOP(b)
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Partial Correctness of Algorithm
• If data flow framework is monotone, then if the algorithm 

converges, IN[b] ≤ MOP[b]
• Proof: Induction on path lengths

– Define IN[entry] = OUT[entry]
and transfer function of entry = Identity function

– Base case: path of length 0
• Proper initialization of IN[entry]

– If true for path of length k, pk = (n1, ..., nk), then
true for path of length k+1: pk+1 = (n1, ..., nk+1)
• Assume: IN[nk] ≤ fnk-1(fnk-2(... fn1(IN[entry])))

• IN[nk+1] = OUT[nk] ∧ ...
  ≤ OUT[nk]

    ≤ fnk (IN[nk])
  ≤ fnk-1(fnk-2(... fn1(IN[entry])))
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Precision

• If data flow framework is distributive,then if the 
algorithm converges, IN[b] = MOP[b]

• Monotone but not distributive: behaves as if there 
are additional paths 
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 b = 3 
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Additional Property to Guarantee Convergence

• Data flow framework (monotone) converges if there 
is a finite descending chain

• For each variable IN[b], OUT[b], consider the sequence 
of values set to each variable across iterations:

– if sequence for in[b] is monotonically decreasing
• sequence for out[b] is monotonically decreasing 

• (out[b] initialized to T)

– if sequence for out[b] is monotonically decreasing
• sequence of in[b] is monotonically decreasing
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Speed of Convergence
• Speed of convergence depends on order of 

node visits

• Reverse “direction” for backward flow 
problems
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Reverse Postorder
• Step 1: depth-first post order

main() {
   count = 1;

   Visit(root);
}
Visit(n) {

   for each successor s that has not been visited
      Visit(s);
   PostOrder(n) = count;
   count = count+1;
}

• Step 2: reverse order
For each node i

   rPostOrder = NumNodes - PostOrder(i)
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Depth-First Iterative Algorithm 
(forward)
input: control flow graph CFG = (N, E, Entry, Exit)
/* Initialize */

    out[entry] = init_value
    For all nodes i
       out[i] = T
    Change = True
/* iterate */

    While Change {
       Change = False
       For each node i in rPostOrder {
          in[i] = ∧(out[p]), for all predecessors p of i
          oldout = out[i]

       out[i] = fi(in[i])
          if oldout ≠ out[i]
             Change = True
       }
    }
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Speed of Convergence
• If cycles do not add information

• information can flow in one pass down a series of nodes of 
increasing order number:
• e.g., 1 -> 4 -> 5 -> 7 -> 2 -> 4 ...

• passes determined by number of back edges in the path
• essentially the nesting depth of the graph

• Number of iterations = number of back edges in any acyclic 
path + 2
• (2 are necessary even if there are no cycles)

• What is the depth?
– corresponds to depth of intervals for “reducible” graphs
– in real programs: average of 2.75
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A Check List for Data Flow Problems

• Semi-lattice
– set of values
– meet operator
– top, bottom
– finite descending chain?

• Transfer functions
– function of each basic block
– monotone
– distributive? 

• Algorithm
– initialization step (entry/exit, other nodes)
– visit order: rPostOrder
– depth of the graph
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Conclusions

• Dataflow analysis examples
– Reaching definitions
– Live variables

• Dataflow formation definition
– Meet operator
– Transfer functions
– Correctness, Precision, Convergence
– Efficiency
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